Tuberculosis (TB) is the leading cause of death due to infectious disease in the world today. It is estimated that 2 billion people are currently infected, and although most people have latent infection, reactivation can occur. This paper by Denise Kirschner and colleagues, publishing in PLoS Computational Biology, conducts virtual clinical trials to examine the causes of reactivation.

Tumor necrosis factor alpha (TNF) is a protein that facilitates cell-cell communication during an inflammatory immune response. Animal models have shown that TNF is vital for control of TB infection. However, anti-TNF treatments are common therapies for treating autoimmune diseases, and this can cause an unwanted side effect of reactivating latent TB. Kirschner has developed a computational model that can quickly perform virtual clinical trials to predict why reactivation occurs and why it happens differently with different drugs.

Their results suggest that anti-TNF therapy is highly likely to lead to many incidents of TB if used in areas where exposure to the TB pathogen is probable. However, they also propose that a TNF-modulating agent could be developed that could balance the requirement for reduction of inflammation with the necessity to maintain resistance to infection and microbial disease. In the mean time, modifying the dosage and timing of anti-TNF treatment could prevent reactivation, as could a complete regimen of antibiotic treatment for TB prior to anti-TNF treatment.

CITATION: Marino S, Sud D, Plessner H, Lin PL, Chan J (2007) Differences in reactivation of tuberculosis induced from anti-TNF treatments are based on bioavailability in granulomatous tissue. PLoS Comput Biol 3(10): e194. doi:10.1371/journal.pcbi.0030194
Please click here

Disclaimer

This press release refers to an upcoming article in PLoS Computational Biology. The release is provided by journal staff. Any opinions expressed in this release or article are the personal views of the journal staff, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the releases and articles and your use of such information.

About PLoS Computational Biology

PLoS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales through the application of computational methods. All works published in PLoS Computational Biology are open access. Everything is immediately available subject only to the condition that the original authorship and source are properly attributed. Copyright is retained by the authors. The Public Library of Science uses the Creative Commons Attribution License.

ploscompbiol

About the Public Library of Science

The Public Library of Science (PLoS) is a non-profit organization of scientists and physicians committed to making the world's scientific and medical literature a freely available public resource.

Public Library of Science
185 Berry Street, Suite 3100
San Francisco, CA 94107
USA

Tag Cloud